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1. Introduction and summary

As pointed out in [1], the vacuum moduli space of Supersymmetric Quantum Chromody-

namics (SQCD) has a very rich structure from which we can employ various algebraic and

geometrical techniques to gain physical insights. The plethystic programme, Molien-Weyl

formula and character expansion techniques provide a very satisfactory way in construct-

ing generating functions (Hilbert Series) which solve the complicated problem on counting

gauge invariant operators. Having studied the SU(Nc) SQCD in [1], we extend our work

to the other classical gauge groups, namely SO(Nc) and Sp(Nc). Several aspects of the SO

and Sp gauge theories, e.g. dualities, deconfinement, s-confinement, have been extensively

studied in a series of works [2 – 15].
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In this paper, we shall focus on N = 1 SQCD with SO(Nc) and Sp(Nc) gauge groups

with Nf flavours of quarks transforming, respectively, in the vector and fundamental rep-

resentations of the gauge group. The global symmetries of the theory are respectively

SU(Nf ) × U(1)R and SU(2Nf ) × U(1)R. We shall concentrate our attention on the case

with a vanishing superpotential. The vacuum space is conveniently described by polyno-

mial equations written in terms of variables which are the holomorphic gauge invariant

operators (GIOs) of the theory, namely the mesons and baryons for the SO theories, and

the mesons for the Sp theories.

To facilitate the reading of this paper, we have highlighted the key points in bold font

as observations. Below, we collect the main results of our work.

Outline and key points.

• In section 2, we examine the classical moduli space of SO(Nc) SQCD with Nf flavours.

For Nf < Nc, the moduli space is C
1
2
Nf (Nf +1) (Observation 1) with the Hilbert Series

given by (2.4). For Nf = Nc, the moduli space is a complete intersection and is, in

fact, a single hypersurface in C
1
2
Nf (Nf +1)+1 (Observation 2) with the Hilbert Series

given by (2.10). For Nf > Nc, the moduli space is a non-complete intersection of

polynomial relations (syzygies) amongst the GIOs. We use the plethystic exponen-

tial and Molien-Weyl formula to derive generating functions for various Nf and Nc.

We also use the plethystic logarithm to count basic generators of GIOs and basic

constraints between them.

• In section 2.4, we synthesise our prior results using representation theory and the

character expansion. It proves useful to write the Hilbert series in terms of charac-

ters. This permits the generalisation of our results to an arbitrary number of colours

and flavours. Subsequently, we obtain an important result, namely the full charac-

ter expansion of the generating function for any Nf in an arbitrary SO(Nc) theory

(Equations (2.29), (2.30), (2.31)).

• In section 3, we investigate the classical moduli space of Sp(Nc) SQCD with Nf

flavours. For Nf ≤ Nc, the moduli space is C
1
2
Nf (Nf +1) (Observation 4) with the

Hilbert Series given by (3.3). For Nf = Nc + 1, the moduli space is a complete inter-

section and is, in fact, a single hypersurface in C
(2Nc+1)(Nc+1) (Observation 5) with

the Hilbert Series given by (3.6). For Nf > Nc+1, the moduli space is a non-complete

intersection of syzygies amongst the GIOs. The plethystic exponential and Molien-

Weyl formula are used to derive generating functions for various Nf and Nc. We also

count basic generators of GIOs and basic constraints using the plethystic logarithm.

• The full character expansion of the generating function for any Nf in an arbitrary

Sp(Nc) theory is given in (3.10).

• In section 4, we study how the SO and Sp gauge theories arise from the SU gauge

theory due to an orientifold Z2 action. Without specifying the explicit brane con-

struction, we consider an orientifold projection on the global symmetry, the basic
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Gauge symmetry Global symmetry

SO(Nc) SU(Nf ) U(1)B U(1)R

Qi
a 1

Nf +2−Nc

Nf

Table 1: The gauge and global symmetries of SO(Nc) SQCD with Nf flavours and the quantum

numbers of the chiral supermultiplets.

generators, and the basic constraints in the SU theory. We find that the projection

occurs in two steps: The antifundamental index is first turned into a fundamental

index, and the resulting symmetry then gets respectively symmetrised and antisym-

metrised in the SO and Sp theories.

• In section 5, we take a geometric aperçu of the moduli space of SQCD. We establish

that the classical moduli space is an irreducible affine Calabi-Yau cone.

Notation for irreducible representations. We may represent an irreducible repre-

sentation of a classical group G by a Young diagram. Let λi be the length of the i-th

row (1 ≤ i ≤ r ≡ rank G) and let ai = λi − λi+1 be the differences of lengths of rows.

Henceforth, we denote such a representation by the notation [a1, a2, . . . , ar]. We denote by

[1, 0, . . . , 0] the fundamental representations of SU and Sp and the vector representation

of SO. We also use the subscripts k;L and k;R to indicate respectively the kth-postitions

from the left and the right, e.g. 1k;L in [0, . . . , 0, 1k;L, 0, . . . , 0] denotes the 1 in the k-th po-

sition from the left. For representations of the product group G1 ×G2, we use the notation

[. . . ; . . .] where the tuple to the left of the ‘;’ is the representation of G1, and the tuple to

the right of the ‘;’ is the representation of G2.

2. SO(Nc) SQCD with Nf flavours

We specify SQCD with gauge group SO(Nc) and Nf flavours by the ordered pair

(Nf ,SO(Nc)). This theory has quarks Qi
a, with flavour indices i = 1, . . . , Nf and colour

indices a = 1, . . . , Nc. Thus, there is a total of NcNf chiral degrees of freedom from the

quarks. Their quantum numbers are summarised in table 1. For reviews on this theory

see, e.g., [2 – 4]. For Nf < Nc, the moduli space is C
1
2
Nf (Nf +1) (Observation 1) with the

Hilbert Series given by (2.4).

For Nf ≤ Nc − 2, at a generic point in the classical moduli space, the SO(Nc) gauge

symmetry is broken to SO(Nc−Nf ). Since the dimension of SO(N) is 1
2N(N−1), there are

1

2
Nc(Nc − 1) −

1

2
(Nc − Nf )(Nc − Nf − 1) = NcNf −

1

2
Nf (Nf + 1)

broken generators. Therefore, of the original NcNf chiral supermultiplets, only

NcNf −

[

NcNf −
1

2
Nf (Nf + 1)

]

=
1

2
Nf (Nf + 1)

– 3 –
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singlets are left massless. Hence, the dimension of the moduli space of vacua is

dim
(

MNf≤Nc−2

)

=
1

2
Nf (Nf + 1) . (2.1)

For Nf ≥ Nc − 1, at a generic point in the moduli space, the SO(Nc) gauge symmetry

is broken completely and hence the number of remaining massless chiral supermultiplets

(i.e. the dimension of the moduli space) is given by

dim
(

MNf≥Nc−1

)

= NfNc −
1

2
Nc(Nc − 1) . (2.2)

According to [2], we see that the ‘D-flatness’ constraints force us to consider matter

field solutions in two cases, namely Nf < Nc and Nf ≥ Nc. We shall focus on GIOs in

each of these cases below.

2.1 The case of Nf < Nc

We can describe the 1
2Nf (Nf + 1) light degrees of freedom in a gauge invariant way by

the mesons:

M ij = Qi
aQ

j
bδ

ab (meson) . (2.3)

We emphasise that the indices i and j are symmetric. Therefore, the meson transforms

in the global SU(Nf ) representation Sym2[1, 0, . . . , 0] = [2, 0, . . . , 0]. We note that for

the Nf < Nc theory, there are no relations (constraints) between mesons. Phrasing this

geometrically, and noting the dimension from (2.1), we have that

Observation 1. The moduli space MNf <Nc is freely generated: there are no relations

among the generators. The space MNf <Nc is, in fact, nothing but C
1
2
Nf (Nf +1).

Using the plethystic programme [1, 18, 21 – 24], we can immediately write down the

generating function of GIOs for Nf < Nc as1

gNf <Nc(t) =
1

(1 − t2)
1
2
Nf (Nf +1)

. (2.4)

where t is a chemical potential which can be taken to be conjugate to the R-charge. We

emphasise that this formula does not depend on the number of colours Nc. This expression

is simply the Hilbert series for C
1
2
Nf (Nf +1), with weight 2 for each meson.

2.2 The case of Nf ≥ Nc

We can describe the light degrees of freedom in a gauge invariant way by the following

basic generators:

M ij = Qi
aQ

j
bδ

ab (mesons) ; (2.5)

Bi1...iNc = Qi1
a1

. . . Q
iNc
aNc

ǫa1...aNc (baryons) .

1This expression can be written in terms of the plethystic exponential, which is defined in (2.11), as

PE
ˆ

t2 dim [2, 0, . . . , 0]
˜

= PE
ˆ

1
2
Nf (Nf + 1)t2

˜

.

– 4 –
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For Nf ≥ Nc, under the global SU(Nf ) symmetry, the mesons M transform

in the [2, 0, . . . , 0] representation and the baryons B transform respectively in

[0, 0, . . . , 1Nc;L, 0, . . . , 0], where 1j;L denotes a 1 in the j-th position from the left. The

dimensions of these representations are respectively 1
2Nf (Nf + 1) and

(Nf

Nc

)

.

We emphasise that the basic generators in (2.5) are not independent, but they are

subject to the following constraints. Any product of M ’s and B’s antisymmetrised on

Nc + 1 (or more) upper or lower flavour indices must vanish:

M · ∗B = 0 , (2.6)

where (∗B)iNc+1...iNf
= 1

Nc!
ǫi1...iNf

Bi1...iNc and a ‘·’ denotes a contraction of an upper

with a lower flavour index. We note that this constraint transform in the global SU(Nf )

representation

[1, 0, . . . , 0, 1Nc+1;L, 0, . . . , 0] .

Another constraint follows from the facts that the rank of the meson M is Nc and

that the product of two epsilon tensors can be written as the antisymmetrised sum of

Kronecker deltas:

Bi1...iNc Bj1...jNc
= M

[i1
j1

. . . M
jNc ]
jNc

, (2.7)

We note that this constraint transforms in the global SU(Nf ) representation

Sym2[0, . . . , 0, 1Nc ;L, 0, . . . , 0] .

Because of these constraints, the spaces MNf≥Nc are not freely generated. Moreover,

they also prevent us from writing a generating function as directly as in (2.4). Nevertheless,

we will see that the Molien-Weyl formula gives us the right answer.

2.2.1 The case of Nf = Nc

The special case of Nf = Nc deserves some special attention. The total number of basic

generators for the GIOs, coming from the two contributions in (2.5), is 1
2Nf (Nf + 1) + 1.

From (2.2), the dimension of the moduli space is

dim
(

MNf=Nc

)

=
1

2
Nf (Nf + 1) . (2.8)

There is one constraint (2.7), which in this case can be reduced to a single hypersurface:

B2 = det(M) . (2.9)

This constraint transforms in the trivial representation [0, . . . , 0] of the global symmetry

SU(Nf ) (as the length of the weight is the rank of SU(Nf ) or Nf − 1, there are no

1’s). Note that the relation (2.6) does not provide any additional information and (2.7)

constitutes the only constraint. Since, in this case, the dimension of the moduli space

equals the number of the basic generators minus the number of constraints, we arrive at

another important conclusion:

– 5 –
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Observation 2. The moduli space MNf =Nc is a complete intersection. It is in fact a

single hypersurface in C
1
2
Nf (Nf +1)+1.

An interesting question to consider is to determine the number of independent GIOs

that can be constructed from the basic generators (2.5) subject to the constraints (2.6)

and (2.7). In the case Nf = Nc, where the only constraint is (2.9), the generating function

can be easily computed from the knowledge that the modul space is a complete intersection

(See [18] for a detailed discussion on this). There are 1
2Nf (Nf +1) = 1

2Nc(Nc +1) mesonic

generators of weight t2 and one baryonic generator of weight tNc , subject to a relation of

weight t2Nc . As a result, the generating function takes the form2

gNf =Nc(t) =
1 − t2Nc

(1 − t2)
1
2
Nc(Nc+1)(1 − tNc)

=
1 + tNc

(1 − t2)
1
2
Nc(Nc+1)

. (2.10)

This is indeed the Hilbert series of the hypersurface (2.9).

2.3 Counting gauge invariants: the plethystic exponential and Molien-Weyl

formula

Since a special orthogonal group falls into one of the two categories of the classical groups,

namely Bn = SO(2n + 1) and Dn = SO(2n), we use this notation throughout the section

unless indicated otherwise. We note that the Lie algebras of Bn and Dn both have the

same rank n.

To write down explicit formulae and for performing computations we need to introduce

weights for the different elements in the maximal torus of the different groups. We use za

(where a runs over 1, . . . , n) for colour weights and ti (where i = 1, . . . , Nf ) for flavour

weights. These weights have the interpretation of chemical potentials3 for the charges

they count and the characters of the representations are functions of these variables. Cor-

respondingly, the character for a quark is χ
SU(Nf )×Bn

[1,0,...,0;1,0,...,0](tα, za) or χ
SU(Nf )×Dn

[1,0,...,0;1,0,...,0](tα, za)

(where α = 1, . . . , Nf −1) depending on which gauge group we are dealing with. We further

introduce a chemical potential which counts the number of quarks, t.

We construct chiral GIOs by first taking symmetric products of quarks, which

transform in the bifundamental [1, 0, . . . , 0; 1, 0, . . . , 0] of SU(Nf ) × SO(Nc). Recall

from [1, 6, 18, 21 – 23, 25, 30 – 32] that a convenient combinatorial tool which constructs

symmetric products of representations is the plethystic exponential, which is a generator for

symmetrisation. To briefly remind the reader, the plethystic exponential, PE, of a function

g(t1, . . . , tn) is defined to be exp

(

∞
∑

k=1

g(tk1 ,...,tkn)
k

)

. Whence, we have that

PE
[

tχ
SU(Nf )×Bn,Dn

[1,0,...,0;1,0,...,0] (tα, za)
]

≡ exp

[

∞
∑

k=0

1

k

(

tkχ
SU(Nf )×Bn,Dn

[1,0,...,0;1,0,...,0] (t
k
α, zk

a)
)

]

. (2.11)

2This expression can be written in terms of the plethystic exponential, which is defined in (2.11), as
`

1 − t2Nc

´

PE
ˆ

t2 dim [2, 0, . . . , 0] + tNc dim [0, . . . , 0]
˜

=
`

1 − t2Nc

´

PE
ˆ

1
2
Nc(Nc + 1)t2 + tNc

˜

3Strictly speaking, they are not true chemical potentials conjugate to the number of charges. They are

in fact fugacities. We shall however slightly abuse the terminology by calling them chemical potentials.
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A somewhat more explicit form for the character can be

tχ
SU(Nf )×Bn,Dn

[1,0,...,0;1,0,...,0] (tα, za) = χBn,Dn

[1,0,...,0](za)

Nf
∑

i=1

ti , (2.12)

where α = 1, . . . , Nf − 1 and a = 1, . . . n. Combining (2.11) with (2.12), we obtain

PE



χBn,Dn

[1,0,...,0](za)

Nf
∑

i=1

ti



 = exp





∞
∑

k=0

1

k



χBn,Dn

[1,0,...,0](z
k
a)

Nf
∑

i=1

tki







 . (2.13)

Here, the dummy variables ti are the chemical potentials associated to quarks counting the

U(1)-charges in the maximal torus of the global symmetry. Henceforth, we shall take their

values to be such that |ti| < 1 for all i.

Having obtained symmetric products of quarks using the plethystic exponential, we

remind the reader that our aim is to obtain the generating function that counts gauge

invariant quantities. Therefore, the next step is to project the representations of the

gauge group generated by the plethystic exponential onto the trivial subrepresentation,

which consists of the quantities invariant under the action of the gauge group. Using

knowledge from representation theory, this can be done by integrating over the whole

group (see, e.g., [26 – 29]). Hence, the generating functions for the (Nf , Bn) and (Nf ,Dn)

theories are given by

g(Nf ,Bn), g(Nf ,Dn) =

∫

Bn,Dn

dµBn,Dn PE



χBn,Dn

[1,0,...,0](za)

Nf
∑

i=1

ti



 . (2.14)

These formulae are the Molien-Weyl formulae.

Let us write the above generating function in a ready-to-calculate form. For each

category, we take a basis for the dual space of the Cartan subalgebra to be {La}
n
a=1. A

convenient choice which we shall adopt is La = (0, . . . , 0, 1a;L, 0, . . . , 0), where the length

of the tuple is n. The weights of the fundamental representations of Bn and Dn are

respectively {0,±La} and {±La}. With this choice, we can write down the characters of

the fundamental representations of Bn and Dn respectively as

χBn

[1,0,...,0](za) = 1 +
n
∑

a=1

(

za +
1

za

)

,

χDn

[1,0,...,0](za) =

n
∑

a=1

(

za +
1

za

)

. (2.15)

Using formula (2.13) and the expansion − log(1 − x) =
∑∞

k=1 xk/k, we can write the

plethystic exponential as

PE



χBn

[1,0,...,0](zl)

Nf
∑

i=1

ti



 =
1

∏Nf

i=1

∏n
a=1(1 − ti)(1 − tiza)

(

1 − ti
za

) ,

PE



χDn

[1,0,...,0](zl)

Nf
∑

i=1

ti



 =
1

∏Nf

i=1

∏n
a=1(1 − tiza)

(

1 − ti
za

) . (2.16)
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The roots of the Lie algebras of Bn and Dn are respectively {±La ±Lb,±La} (with a 6= b)

and {±La ± Lb} (with a 6= b). Haar measures of special orthogonal groups can be written

explicitly using Weyl’s integration formula (see, e.g., section 26.2 of [19]):

∫

Bn

dµBn =
1

(2πi)nn!2n

∮

|z1|=1
. . .

∮

|zn|=1

dz1

z1
. . .

dzn

zn

∏

{α}

(

1 −
n
∏

l=1

zαl

l

)

,

∫

Dn

dµDn =
1

(2πi)nn!2n−1

∮

|z1|=1
. . .

∮

|zn|=1

dz1

z1
. . .

dzn

zn

∏

{β}

(

1 −
n
∏

l=1

zβl

l

)

, (2.17)

where α and β are respectively roots of Bn and Dn, and the notation αl denotes the number

in the l-th position of the root α = (α1, α2, . . . , αn) and similarly for β. For reference, we

shall give explicit examples for small values of Nc:
∫

SO(3)
dµSO(3) =

1

2 × 2πi

∮

|z|=1

dz

z

(

1 −
1

z

)

(1 − z) ,

∫

SO(4)
dµSO(4) =

1

4×(2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

(

1−
z1

z2

)(

1−
z2

z1

)(

1−
1

z1z2

)

(1−z1z2) ,

∫

SO(5)
dµSO(5) =

1

8 × (2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

(

1 −
1

z1

)

(1 − z1)

(

1 −
1

z2

)

(1 − z2)

×

(

1 −
z1

z2

)(

1 −
z2

z1

)(

1 −
1

z1z2

)

(1 − z1z2) . (2.18)

As an example, we shall demonstrate how to calculate the generating function g(3,SO(3)).

Putting the above together, we find that

g(3,SO(3))(t1, t2, t3) =
1

2 × 2πi

∮

|z|=1

dz

z

(

1 − 1
z

)

(1 − z)
∏3

i=1

[

(1 − ti)(1 − tiz)
(

1 − ti
z

)] (2.19)

Using the residue theorem with the poles z = 0, t1, t2, t3 within the unit circle, we find that

g(3,SO(3))(t1, t2, t3) =
1 − t21 t22 t23

(1 − t1t2t3)
∏

1≤i≤j≤3(1 − titj)
. (2.20)

Note that upon setting t1 = t2 = t3 = t, we recover formula (2.10) with Nc = 3. The

latter is called the unrefined generating function. It suffices for our purposes to compute

unrefined generating functions (i.e. setting all ti = t). Results are listed below:

The case of Nc = 3. Let us compute unrefined generating functions for the Nc = 3

theory. We have

g(Nf ,SO(3))(t) =
1

2 × 2πi

∮

|z|=1

dz

z

(

1 − 1
z

)

(1 − z)
[

(1 − t)(1 − tz)
(

1 − t
z

)]Nf
. (2.21)

Using the residue theorem with the poles at z = 0 and z = t, we find the following

generating functions:

g(1,SO(3))(t) =
1

1 − t2
= 1 + t2 + t4 + t6 + t8 + t10 + · · · ,

g(2,SO(3))(t) =
1

(1 − t2)3
= 1 + 3t2 + 6t4 + 10t6 + 15t8 + 21t10 + · · · ,

– 8 –
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g(3,SO(3))(t) =
1 − t6

(1 − t2)6(1 − t3)
=

1 + t3

(1 − t2)6

= 1 + 6t2 + t3 + 21t4 + 6t5 + 56t6 + 21t7 + 126t8 + 56t9 + 252t10 + · · · ,

g(4,SO(3))(t) =
1 + t2 + 4t3 + t4 + t6

(1 − t2)9

= 1+10t2+4t3+55t4+36t5+220t6+180t7+714t8+660t9+1992t10+· · · ,

g(5,SO(3))(t) =
1 + 3t2 + 10t3 + 6t4 + 6t5 + 10t6 + 3t7 + t9

(1 − t2)12

= 1 + 15t2 + 10t3 + 120t4 + 126t5 + 680t6 + 855t7 + 3045t8 + · · · ,

g(6,SO(3))(t) =
1 + 6t2 + 20t3 + 21t4 + 36t5 + 56t6 + 36t7 + 21t8 + 20t9 + 6t10 + t12

(1 − t2)15

= 1 + 21t2 + 20t3 + 231t4 + 336t5 + 1771t6 + 2976t7 + 10521t8 + · · · ,

g(7,SO(3))(t) = 1 + 28t2 + 35t3 + 406t4 + 756t5 + 4060t6 + 8478t7 + 30975t8 + · · · .(2.22)

The case of Nc = 4. Let us compute generating functions for the Nc = 4 theory:

g(Nf ,SO(4))(t)=
1

4×(2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

(

1− z1
z2

)(

1− z2
z1

)(

1− 1
z1z2

)

(1−z1z2)
[

(1 − tz1)
(

1 − t
z1

)

(1 − tz2)
(

1 − t
z2

)]Nf
.

(2.23)

Integrating along the contour |z2| = 1 enclosing the poles z2 = 0, t and then along the

contour |z1| = 1 enclosing the poles z1 = 0, t, we find that

g(1,SO(4))(t) =
1

1 − t2
= 1 + t2 + t4 + t6 + t8 + t10 + · · · ,

g(2,SO(4))(t) =
1

(1 − t2)3
= 1 + 3t2 + 6t4 + 10t6 + 15t8 + 21t10 + · · · ,

g(3,SO(4))(t) =
1

(1 − t2)6
= 1 + 6t2 + 21t4 + 56t6 + 126t8 + 252t10 + · · · ,

g(4,SO(4))(t) =
1 − t8

(1 − t2)10(1 − t4)
=

1 + t4

(1 − t2)10

= 1 + 10t2 + 56t4 + 230t6 + 770t8 + 2222t10 + · · · ,

g(5,SO(4))(t) =
1 + t2 + 6t4 + t6 + t8

(1 − t2)14

= 1 + 15t2 + 125t4 + 750t6 + 3585t8 + 14427t10 + · · · ,

g(6,SO(4))(t) =
1 + 3t2 + 21t4 + 20t6 + 21t8 + 3t10 + t12

(1 − t2)18

= 1 + 21t2 + 246t4 + 2051t6 + 13377t8 + 72030t10 + · · · ,

g(7,SO(4))(t) =
1 + 6t2 + 56t4 + 126t6 + 210t8 + 126t10 + 56t12 + 6t14 + t16

(1 − t2)22

= 1 + 28t2 + 441t4 + 4900t6 + 41944t8 + 291648t10 + · · · ,
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g(8,SO(4))(t) =
1 + 10t2 + 125t4 + 500t6 + 1310t8 + 1652t10 + 1310t12

(1 − t2)26

+
500t14 + 125t16 + 10t18 + t20

(1 − t2)26

= 1 + 36t2 + 736t4 + 10536t6 + 114696t8 + 1000728t10 + · · · . (2.24)

The case of Nc = 5. Finally, let us compute generating functions for the Nc = 5 theory:

g(Nf ,SO(5))(t) =
1

8 × (2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

×

(

1− 1
z1

)

(1−z1)
(

1− 1
z2

)

(1−z2)
(

1− z1
z2

)(

1− z2
z1

)(

1− 1
z1z2

)

(1−z1z2)
[

(1 − t)
(

1 − t
z1

)

(1 − tz1)
(

1 − t
z2

)

(1 − tz2)
]Nf

.

(2.25)

As before, we obtain generating functions as follows:

g(1,SO(5))(t) =
1

1 − t2
= 1 + t2 + t4 + t6 + t8 + t10 + · · · ,

g(2,SO(5))(t) =
1

(1 − t2)3
= 1 + 3t2 + 6t4 + 10t6 + 15t8 + 21t10 + · · · ,

g(3,SO(5))(t) =
1

(1 − t2)6
= 1 + 6t2 + 21t4 + 56t6 + 126t8 + 252t10 + · · · ,

g(4,SO(5))(t) =
1

(1 − t2)10
= 1 + 10t2 + 55t4 + 220t6 + 715t8 + 2002t10 + · · · ,

g(5,SO(5))(t) =
1 − t10

(1 − t2)15(1 − t5)
=

1 + t5

(1 − t2)15

= 1+15t2+120t4+t5+680t6+15t7+3060t8+120t9+11628t10+· · · ,

g(6,SO(5))(t) =
1 + t2 + t4 + 6t5 + t6 + t8 + t10

(1 − t2)20

= 1+21t2+231t4+6t5+1771t6+120t7+10626t8+1260t9+53130t10+· · · ,

g(7,SO(5))(t) =
1+3t2+6t4+21t5+10t6+15t7+15t8+10t9+21t10+6t11+3t13+t15

(1 − t2)25

= 1+28t2+406t4+21t5+4060t6+540t7+31465t8+7210t9+201376t10+· · · ,

g(8,SO(5))(t) = 1+36t2+666t4+56t5+8436t6+1800t7+82251t8+29800t9+658008t10+· · · ,

g(9,SO(5))(t) = 1 + 45t2 + 1035t4 + 126t5 + 16215t6 + 4950t7 + 194580t8 + 99550t9 + · · · .(2.26)

From the above examples, it is amusing to observe that

Observation 3. The generating functions for the Nf ≥ Nc theory can be written as

gNf≥Nc(t) =
Pk(t)

(1 − t2)
dimM(Nf ,SO(Nc))

,
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where Pk(t) is a degree k polynomial such that Pk(1) 6= 0 and dimM(Nf ,SO(Nc)) − k is a

constant for a given Nc. This constant, which is 1
2Nc(Nc − 1) =

(

Nc

2

)

, can be computed

from the case of Nf = Nc, where the moduli space is a complete intersection, using (2.10).

As we have seen several examples in [1], this observation also applies for SQCD with SU(2)

gauge group. Later we shall establish a similar observation for SQCD with Sp gauge group.

2.4 Character expansions and global symmetries

In the previous section, we have obtained the generating functions analytically for various

(Nf ,SO(Nc)) theories. As we mentioned earlier, the coefficients of tk in g(Nf ,SO(Nc))(t) is

the number of independent GIOs at the k-th order of quarks. We shall see in this section

that this number is in fact the dimension of some representation of the global symmetry at

that order. Moreover, we shall see that the character expansion allows us to write down the

generating function for any (Nf ,SO(Nc)) theory in a very compact and enlightening way.

Terminology. In order to avoid cluttered notation, henceforth we shall abuse terminol-

ogy by referring to each character by its corresponding representation.

The Nf < Nc theories. Let us take the simplest example: Nf < Nc. From (2.4), we

see that the character expansion for the case of Nf < Nc is

gNf <Nc(t; z1, . . . , zNf−1) = PE
[

t2[2, 0, . . . , 0]
]

=

∞
∑

k=0

Symk[2, 0, . . . , 0]t2k , (2.27)

where the second equality follows from the basic property of the plethystic exponential

which produces all possible symmetric products of the function on which it acts. We

emphasise that we use the fully refined generating function which is a function of Nf

variables, and so this expression depends on Nf variables, not just one variable t. We note

the identity (c.f. (3.4) of [1])

Symk[2, 0, . . . , 0] =
∑

n1,...,nNf
≥0

[2n1, 2n2, . . . , 2nNf−1] δ



k −

Nf
∑

j=1

jnj



 . (2.28)

Therefore, we have the character expansion

gNf <Nc(t; z1, . . . , zNf−1) =
∑

n1,...,nNf
≥0

[2n1, 2n2, . . . , 2nNf−1] t2a , (2.29)

where a =
∑Nf

j=1 jnj .

Character expansion of an arbitrary (Nf , SO(Nc)) theory. From (2.27), we see

that the basic building block of the GIOs in the SO theory is the irreducible representa-

tion with 2 Young boxes which are symmetrised. Any other irreducible representation is

obtained by repeating this basic building block and, in fact, each of such an irreducible

representation appears precisely once in the character expansion. However, when baryons

get involved in the theory, this observation is slightly modified. We propose selection rules

for the coefficients of the character expansion of g(Nf ,SO(Nc)) as follows:
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• For Nf > Nc, the numbers located after the Nc-th from the left are zeros, since any

product of M ’s and B’s antisymmetrised on Nc + 1 (or more) upper or lower avour

indices must vanish;

• The numbers located in the 1st, 2nd, . . . , (Nc − 1)-th postitions from the left are even,

whereas the number in the Nc-th position can be either even or odd. The latter is due

to the fact that the baryon transforms in the representation [0, 0, . . . , 1Nc;L, 0, . . . , 0]

of the SU(Nf ) global symmetry.

Hence, the character expansion of the generating function of any (Nf , Nc) theory is

g(Nf >Nc,SO(Nc))(t; z1, . . . , zNf−1) =
∑

n1,...,nNc≥0

[2n1, 2n2, . . . , 2nNc−1, nNc , 0, . . . , 0] tb ,

(2.30)

where b = 2
∑Nc−1

j=1 jnj +nNcNc . For Nf = Nc, this formula goes through and has the form

gNf =Nc(t; z1, . . . , zNc−1) =
∑

n1,...,nNc≥0

[2n1, 2n2, . . . , 2nNc−1] tb . (2.31)

A non-trivial check of the general character expansion (2.30). We note that the

dimension of the representation [a1, . . . , an−1] of SU(n) is given by the formula (see, e.g.,

(15.17) of [19]):

dim [a1, . . . , an−1] =
∏

1≤i<j≤n

(ai + · · · + aj−1) + j − i

j − i
. (2.32)

Applying this dimension formula to the representations in (2.30) for various (Nf , Nc) and

summing the series into closed forms, we obtain the expressions which are in agreement of

the earlier results.

As an example for the Bn gauge group, let us consider (Nf = 5, Nc = 3) theory. Using

formula (2.32), we find that

dim [2n1, 2n2, n3, 0] =
1

4! 3! 2! 1!
(2.33)

×(2n1+1)(2n1+2n2+2)(2n1+2n2+n3+3)(2n1+2n2+n3+0+4)

×(2n2 + 1)(2n2 + n3 + 2)(2n2 + n3 + 0 + 3)

×(n3 + 1)(n3 + 0 + 2)

×(0 + 1) .

Replacing the representation in (2.30) with this expression and summing over n1, n2, n3, n4,

we recover the expression

g(5,SO(3))(t) =
1 − 3t + 9t2 − 9t3 + 9t4 − 3t5 + t6

(1 − t)12(1 + t)9
.

As an example for the Dn gauge group, let us consider (Nf = 5, Nc = 4) theory. We have

the dimension formula

dim[2n1, 2n2, 2n3, n4] =
1

4! 3! 2! 1!
(2.34)

×(2n1+1)(2n1+2n2+2)(2n1+2n2+2n3+3)(2n1+2n2+n3+n4+4)

– 12 –



J
H
E
P
1
0
(
2
0
0
8
)
0
1
2

×(2n2 + 1)(2n2 + 2n3 + 2)(2n2 + 2n3 + n4 + 3)

×(2n3 + 1)(2n3 + n4 + 2)

×(n4 + 1) .

Replacing the representation in (2.30) with this expression and summing over n1, n2, n3, n4,

we recover the expression

g(5,SO(4))(t) =
1 + t2 + 6t4 + t6 + t8

(1 − t2)14
.

2.5 Counting basic generators of gauge invariants and syzygies: the plethystic

logarithm

We will use the plethystic logarithm to deduce the number of generators and constraints at

each order of quarks and antiquarks from the generating function [21, 22]. We recall the

expression for the plethystic logarithm, PL, the inverse function to PE, is

PL[g(Nf ,SO(Nc))(t1, . . . tNf
)] =

∞
∑

k=1

µ(k)

k
log(g(Nf ,SO(Nc))(tk1 , . . . , t

k
Nf

)) , (2.35)

where µ(k) is the Möbius function. The significance of the series expansion of the plethystic

logarithm is stated in [21, 22]: the first terms with plus sign give the basic generators while

the first terms with the minus sign give the constraints between these basic generators. If the

formula (2.35) is an infinite series of terms with plus and minus signs, then the moduli space

is not a complete intersection and the constraints in the chiral ring are not trivially gener-

ated by relations between the basic generators, but receive stepwise corrections at higher

degree. These are the so-called higher syzygies. We shall demonstrate these facts below.

The case of Nc = 3.

PL[g(2,SO(3))(t)] = 3t2 ,

PL[g(3,SO(3))(t)] = 6t2 + t3 − t6 ,

PL[g(4,SO(3))(t)] = 10t2 + 4t3 − 4t5 − 10t6 + 15t8 + 20t9 + · · · ,

PL[g(5,SO(3))(t)] = 15t2 + 10t3 − 24t5 − 55t6 + 15t7 + 225t8 + 330t9 + · · · ,

PL[g(6,SO(3))(t)] = 21t2 + 20t3 − 84t5 − 210t6 + 120t7 + 1575t8 + 2604t9 + · · · ,

PL[g(7,SO(3))(t)] = 28t2 + 35t3 − 224t5 − 630t6 + 540t7 + 7350t8 + 13720t9 + · · · .

The case of Nc = 4.

PL[g(2,SO(4))(t)] = 3t2 ,

PL[g(3,SO(4))(t)] = 6t2 ,

PL[g(4,SO(4))(t)] = 10t2 + t4 − t8 ,

PL[g(5,SO(4))(t)] = 15t2 + 5t4 − 5t6 − 15t8 + 24t10 + 30t12 + · · · ,

PL[g(6,SO(4))(t)] = 21t2 + 15t4 − 35t6 − 99t8 + 504t10 + 245t12 + · · · ,
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PL[g(7,SO(4))(t)] = 28t2 + 35t4 − 140t6 − 441t8 + 4620t10 − 1330t12 + · · · ,

PL[g(8,SO(4))(t)] = 36t2 + 70t4 − 420t6 − 1540t8 + 27300t10 − 32150t12 + · · · ,

PL[g(9,SO(4))(t)] = 45t2 + 126t4 − 1050t6 − 4536t8 + 121464t10 − 267765t12 + · · · .

The case of Nc = 5.

PL[g(2,SO(5))(t)] = 3t2 ,

PL[g(3,SO(5))(t)] = 6t2 ,

PL[g(4,SO(5))(t)] = 10t2 ,

PL[g(5,SO(5))(t)] = 15t2 + t5 − t10 ,

PL[g(6,SO(5))(t)] = 21t2 + 6t5 − 6t7 − 21t10 + 35t12 − 15t14 + 70t15 − 210t17 + · · · ,

PL[g(7,SO(5))(t)] = 28t2+21t5−48t7+28t9−231t10+980t12−1668t14+3080t15+· · · ,

PL[g(8,SO(5))(t)] = 36t2 + 56t5 − 216t7 + 280t9 − 1596t10 − 120t11

+11760t12 − 37620t14 + · · · ,

PL[g(9,SO(5))(t)] = 45t2 + 126t5 − 720t7 + 1540t9 − 8001t10 − 1440t11

+88200t12 + 495t13 + · · · .

Character expansion of the plethystic logarithm. We emphasise that coefficients

in plethystic logarithmic series are dimensions of representations of the SU(Nf ) global

symmetry. It is therefore possible to calculate character expansions of plethystic logarithms

in a similar fashion to those of generating functions. However, since we are interested in

basic generators and basic constraints, only first few terms are significant for our purposes.

Consider an example of PL
[

g(9,SO(4))(ti)
]

. The character expansion is

PL
[

g(9,SO(4))(t; z1, . . . , z8)
]

=[2, 0, 0, 0, 0, 0, 0, 0]t2 +[0, 0, 0, 1, 0, 0, 0, 0]t4−[1, 0, 0, 0, 1, 0, 0, 0]t6

−
(

Sym2[0, 0, 0, 1, 0, 0, 0, 0]−[2, 0, 0, 0, 0, 1, 0, 0]
)

t8+· · · . (2.36)

For the basic generators of the GIOs, the coefficient of t2 indicates that there are mesons

at order 2 and the coefficient of t4 indicates that there are baryons at order 4. For the

basic constraints, the coefficient of t6 suggests that there is a relation between the basic

generators at order 6 given by (2.6) and the symmetric square in the coefficient of t8

suggests that there is also a relation at order 8 given by (2.7). However, we can see that

this relation at order 8 receives a correction −[2, 0, 0, 0, 0, 1, 0, 0], which results from the

product between the generator at order t2 and the relation at order t6. This correction is

the first in an infinite tower of relations that will not be dealt with here. Note that for

the general SO(Nc) theory, such a product is at order Nc + 4, and so we see that such a

correction at order 8 occurs only when Nc = 4 but not for other values of Nc.

3. Sp(Nc) SQCD with Nf flavours

Let us consider an Sp(Nc) gauge theory4 with Nf flavours of matter in the fundamental

4We shall use the notation where the rank of Sp(n) is n and Sp(1) is isomorphic to SU(2). This is in

agreement with the notation of [7].
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Gauge symmetry Global symmetry

Sp(Nc) SU(2Nf ) U(1)B U(1)R

Qi
a 1

Nf−1−Nc

Nf

Table 2: The gauge and global symmetries of Sp(Nc) SQCD with Nf flavours and the quantum

numbers of the chiral supermultiplets.

2Nc dimensional representation. In the same way as before, we shall specify such a theory

by (Nf ,Sp(Nc)). Since the number of fundamentals must be even according to [16], we

take our matter content to be the quarks Qi
a, with supermultiplet index i = 1, . . . , 2Nf

and colour index a = 1, . . . , 2Nc. Thus, there is a total of 4NcNf chiral degrees of freedom

from the quarks. Their quantum numbers are summarised in table 2. For reviews on this

theory see, e.g., [3, 4, 7].

3.1 The Nf ≤ Nc theories

At a generic point in the classical moduli space, the Sp(Nc) gauge symmetry is broken to

Sp(Nc − Nf ). Since the dimension of Sp(N) is N(2N + 1), there are

Nc(2Nc + 1) − (Nc − Nf )(2Nc − 2Nf + 1) = 4NcNf − 2N2
f + Nf

broken generators. Therefore, of the original 4NcNf chiral supermultiplets, only

4NcNf −
[

4NcNf − 2N2
f + Nf

]

= Nf (2Nf − 1)

singlets are left massless. Hence, the dimension of the moduli space of vacua is

dim
(

MNf≤Nc

)

= Nf (2Nf − 1) . (3.1)

We can describe these light degrees of freedom in a gauge invariant way by the mesons:

M ij = Qi
aQ

j
bJ

ab (meson) , (3.2)

where the matrix J = 1Nc ⊗ iσ2 is an invariant of Sp(Nc). We emphasise that the in-

dices i and j are antisymmetric. Therefore, the meson transforms in the global SU(Nf )

representation Λ2 [1, 0, . . . , 0] = [0, 1, . . . , 0]. We note that for the Nf ≤ Nc theory, there

are no relations (constraints) between mesons. Phrasing this geometrically, and noting the

dimension from (3.1), we have that

Observation 4. The classical moduli space MNf≤Nc is freely generated: there are no

relations among the generators. The space MNf≤Nc is, in fact, nothing but C
Nf (2Nf−1).

Using the plethystic programme, we can immediately write down the generating function

of GIOs for Nf ≤ Nc as

gNf≤Nc(t) = PE
[

t2 dim [0, 1, . . . , 0]
]

= PE
[

Nf (2Nf − 1)t2
]

=
1

(1 − t2)Nf (2Nf−1)
. (3.3)

We emphasise that this formula does not depend on the number of colours Nc. This

expression is simply the Hilbert series for C
Nf (2Nf−1), with weight 2 for each meson.

– 15 –



J
H
E
P
1
0
(
2
0
0
8
)
0
1
2

3.2 The Nf > Nc theories

At a generic point in the moduli space, the Sp(Nc) gauge symmetry is broken completely

and hence the number of remaining massless chiral supermultiplets (i.e. the dimension of

the moduli space) is given by

dim
(

MNf >Nc

)

= 4NfNc − Nc(2Nc + 1) . (3.4)

These light degrees of freedom can be parametrised by the mesons given by (3.2). We refer

to a discussion in [7] that there is no baryon, since the invariant tensor ǫa1...a2Nc decomposes

into sums of products of the Jab and so baryons break up into mesons. There is also a

basic constraint between mesons due to the fact that any product of Ms antisymmetrised

on 2Nc + 1 (or more) upper or lower flavour indices vanishes:

ǫi1...i2Nf
M i1i2M i3i4 . . . M i2Nc+1i2Nc+2 = 0 . (3.5)

The meson and the constraint (3.5) transform respectively in the global SU(2Nf ) repre-

sentations [0, 1, . . . , 0] and [0, . . . , 0, 12Nc+2;L, 0, . . . , 0] . They are respectively
(2Nf

2

)

and
( 2Nf

2Nc+2

)

dimensional.

Although the moduli space MNf >Nc is not freely generated, the special case Nf =

Nc + 1 has a special property:

Observation 5. The moduli space MNf =Nc+1 is a complete intersection and is, in fact,

a single hypersurface in C
(2Nc+1)(Nc+1).

This is because the number of the basic generators (which is
(2Nc+2

2

)

= 2N2
c + 3Nc + 1 =

(2Nc + 1)(Nc + 1)) minus the number of the basic constraints (which is 1) is equal to the

dimension of the moduli space (which is 2N2
c +3Nc). Observation 5 allows us to immediately

write down the generating function for the (Nc +1,Sp(Nc)) theory by noting that there are

(2Nc + 1)(Nc + 1) mesonic generators of weight t2, subject to a relation of weight t2Nc+2 .

g(Nc+1,Sp(Nc))(t) =
(

1 − t2Nc+2
)

PE
[

t2 dim[0, 1, 0, . . . , 0]
]

=
(

1 − t2Nc+2
)

PE
[

(2Nc + 1)(Nc + 1)t2
]

=
1 − t2Nc+2

(1 − t2)(2Nc+1)(Nc+1)

=
1 + t2 + t4 + · · · + t2Nc

(1 − t2)2N2
c +3Nc

. (3.6)

3.3 Character expansions

Let us examine character expansions of generating functions of the Sp theory.

The Nf ≤ Nc theories. Consider the simplest example: Nf ≤ Nc. From (3.3), the

character expansion is

gNf≤Nc(t; z1, . . . , z2Nf−1) = PE
[

t2[0, 1, . . . , 0]
]

=
∞
∑

k=0

Symk[0, 1, 0, . . . , 0]t2k , (3.7)
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where the second equality follows from the basic property of the plethystic exponential

which produces all possible symmetric products of the function on which it acts. We

emphasise that we have used the fully refined generating function which is a function of

2Nf variables, and so this expression depends on 2Nf variables, not just one variable t.

We note the identity (c.f. (3.4) of [1])

Symk[0, 1, . . . , 0] =
∑

n1,...,n2Nf
≥0

[0, n2, 0, n4, 0, . . . , 0, nNf−2, 0] δ



k −

Nf
∑

j=1

2jn2j



 . (3.8)

Therefore, we have the character expansion

gNf≤Nc(t; z1, . . . , z2Nf−1) =
∑

n1,...,n2Nf
≥0

[0, n2, 0, n4, 0, . . . , 0, nNf−2, 0] tα , (3.9)

where α =
∑Nf

j=1 2jn2j .

Character expansion of an arbitrary (Nf , Sp(Nc)) theory. From (3.7), we see that

the basic building block of the GIOs in the Sp theory is the irreducible representation with

2 Young boxes which are antisymmetrised. Any other irreducible representation is built out

of this basic building block and, in fact, each of such an irreducible representation appears

precisely once in the character expansion. We propose selection rules for the coefficients of

the character expansion of g(Nf ,Sp(Nc)) as follows:

• Every number located in an odd position from the left is zero;

• For Nf > Nc + 1, the numbers located after the 2Nc-th position from the left are

zeros, since any antisymmetrisation on 2Nc +1 (or more) flavour indices yields a zero.

It follows that the character expansion for an arbitrary (Nf ,Sp(Nc)) theory is

g(Nf ,Sp(Nc))(t; z1, . . . , z2Nf−1) =
∑

n2,n4,...,n2Nc≥0

[0, n2, 0, n4, 0, n6, 0, . . . , 0, n2Nc , 0, . . . , 0] tβ ,

(3.10)

where β =
∑Nc

j=1 2jn2j . We note that for Nc = 1, formula (3.10) becomes

g(Nf ,Sp(1))(t; z1, . . . , z2Nf−1) =

∞
∑

k=0

[0, k, 0 . . . , 0] t2k . (3.11)

Note that this is also a character expansion of the SU(2) SQCD with Nf flavour (see

formula (5.4) of [1]). Such an agreement is to be expected because of an isomorphism

between Sp(1) and SU(2).

3.4 Plethystic exponentials and Molien-Weyl formula

Let us denote a basis for the dual space of the Cartan subalgebra by {Lm}Nc

m=1. We choose

Lm = (0, . . . , 0, 1m;L, 0, . . . , 0), where the length of the tuple is Nc. The weights of the
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fundamental representation are {±Lm}. With this choice of L’s, we find the character of

the fundamental representation to be

χ
Sp(Nc)
[1,0,...,0](zl) =

Nc
∑

m=1

(

zm +
1

zm

)

. (3.12)

The roots of the Lie algebra of Sp(Nc) are ω = ±Lm ± Ln. Therefore, the Haar measure

is given by

∫

Sp(Nc)
dµSp(Nc) =

1

(2πi)NcNc!2Nc

∮

|z1|=1
. . .

∮

|zNc |=1

dz1

z1
. . .

dzNc

zNc

∏

ω

(

1 −
Nc
∏

l=1

zωl

l

)

, (3.13)

where ωl is the number in the l-th position of the root ω. Similarly to the case of the

SO(Nc) gauge group, we have

g(Nf ,Sp(Nc)) =

∫

Sp(Nc)
dµSp(Nc) PE



χ
Sp(Nc)
[1,0,...,0](zl)

2Nf
∑

i=1

ti



 .

=
1

(2πi)NcNc!2Nc

∮

|z1|=1
. . .

∮

|zNc |=1

dz1

z1
. . .

dzNc

zNc

∏

ω

(

1−
∏Nc

l=1 zωl

l

)

∏2Nf

i=1

∏Nc

m=1(1−tizm)
(

1− ti
zm

) .

(3.14)

For reference, we shall list a few unrefined (i.e. ti = t for all i = 1, . . . , 2Nf ) generating

functions for the Sp(2) SQCD. Using the residue theorem twice with the poles at 0 and t,

we find that

g(1,Sp(2))(t) =
1

1 − t2

= 1 + t2 + t4 + t6 + t8 + t10 + · · · ,

g(2,Sp(2))(t) =
1

(1 − t2)6

= 1 + 6t2 + 21t4 + 56t6 + 126t8 + 252t10 + · · · ,

g(3,Sp(2))(t) =
1 + t2 + t4

(1 − t2)14

= 1 + 15t2 + 120t4 + 679t6 + 3045t8 + 11508t10 + · · · ,

g(4,Sp(2))(t) =
1 + 6t2 + 21t4 + 28t6 + 21t8 + 6t10 + t12

(1 − t2)22

= 1 + 28t2 + 406t4 + 4032t6 + 30744t8 + 191736t10 + · · · ,

g(5,Sp(2))(t) =
1 + 15t2 + 120t4 + 470t6 + 1065t8 + 1377t10 + 1065t12

(1 − t2)30

+
470t14 + 120t16 + 15t18 + t20

(1 − t2)30

= 1 + 45t2 + 1035t4 + 16005t6 + 186285t8 + 1739133t10 + · · · . (3.15)
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We note that these results are consistent with the character expansion (3.10). As an

example, let us consider the (2,Sp(2)) theory:

g(2,Sp(2))(t)=
∑

n2,n4≥0

dim[0, n2, 0]t
2n2+4n4 =

2F1(3, 4; 2; t
2)

(1 − t4)
=

(1 + t2)

(1−t2)5(1−t4)
=

1

(1−t2)6
, (3.16)

where the second equality follows from the dimension formula (3.18) of [1]. As before, we

see that the method of summing dimensions of representations into a closed form provides

a non-trivial check of formula (3.10).

We can also make a similar proposition to Observation 3 that

Observation 6. The generating functions for the Nf ≥ Nc + 1 theory can be written as

gNf≥Nc+1(t) =
Pk(t)

(1 − t2)
dimM(Nf ,Sp(Nc))

,

where Pk(t) is a degree k polynomial such that Pk(1) 6= 0 and dimM(Nf ,Sp(Nc)) − k is a

constant for a given Nc. This constant, which is Nc(2Nc + 1), can be computed from the

case of Nf = Nc + 1, where the moduli space is a complete intersection, using (5).

3.5 Plethystic logarithms

Recall that the plethystic logarithm of the generating function g(Nf ,Sp(Nc)) is given by

PL[g(Nf ,Sp(Nc))(t)] =

∞
∑

k=1

µ(k)

k
log(g(Nf ,Sp(Nc))(tk)) . (3.17)

We emphasise again that the first terms with plus sign give the numbers of basic generators,

whereas the first terms with the minus sign give the numbers of constraints between these

basic generators. If the formula (3.17) is an infinite series of terms with plus and minus

signs, then the moduli space is not a complete intersection. We shall list a few results for

the Sp(2) SQCD:

PL
[

g(1,Sp(2))(t)
]

= t2 ,

PL
[

g(2,Sp(2))(t)
]

= 6t2 ,

PL
[

g(3,Sp(2))(t)
]

= 15t2 − t6 ,

PL
[

g(4,Sp(2))(t)
]

= 28t2 − 28t6 + 63t8 − 36t10 − 378t12 + 1728t14 + · · · ,

PL
[

g(5,Sp(2))(t)
]

= 45t2 − 210t6 + 1155t8 − 2376t10 − 19800t12 + · · · . (3.18)

Take an example of PL
[

g(4,Sp(2))(t)
]

. We see that the term 28t2 indicates that there are

28 basic generators (mesons) at the order of 2 quarks, and the term −28t6 indicates that

there are 28 basic constraints (given by (3.5)) at the order of 6 quarks.
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Figure 1: The quiver diagram of SU(Nc) SQCD with Nf flavours. The red node represents the

SU(Nc) gauge symmetry while the two blue nodes denote the global U(Nf ) symmetries. Each node

gives rise to a U(1) global symmetry, one of which is redundant.

Character expansion of the plethystic logarithm. We can make a character expan-

sion of the plethystic logarithm in a similar fashion as for the SO theory. Consider an

example of PL
[

g(4,Sp(2))
]

. The character expansion is

PL
[

g(4,Sp(2))(t; z1, . . . , z7)
]

= [0, 2, 0, 0, 0, 0, 0]t2 − [0, 0, 0, 0, 0, 1, 0]t6 + · · · . (3.19)

The coefficient of t2 indicates that there is one generator (meson) that transforms in the

28 dimensional [0, 2, 0, 0, 0, 0, 0] representation, and the coefficient of t6 suggests that there

is one relation between the mesons at order 6, given by (3.5), that transforms in the 28

dimensional [0, 0, 0, 0, 0, 1, 0] representation.

4. An orientifold projection

Having the character expansion of the Hilbert Series for SQCD with all classical gauge

groups, we can now turn to study relations between different theories. One natural rela-

tion arises from analogy to certain string theory backgrounds [33 – 35] that include orien-

tifolds [36, 37]. In such backgrounds it is rather common that the gauge group reduces by

a Z2 projection from a unitary gauge group to a symplectic or an orthogonal gauge group.

We will now study the action of this Z2 on the generators and relations of the Hilbert

Series. Any string theory background which embeds the Sp and SO gauge groups through

an orientifold projection will have to act on irreducible representations of the global sym-

metry in the way specified in this section. We will henceforth refer to the Z2 action as an

orientifold action without specifying the explicit brane or other construction.

We remind the reader that the quiver diagram of SQCD with the SU gauge group [1]

can be drawn as in figure 1.

An orientifold action on the global symmetry. The U(Nf )L×U(Nf )R flavour sym-

metry goes down to its diagonal U(Nf ) subgroup for the case of SO gauge group. For

the Sp(Nc) gauge theory, as a result of the vanishing superpotential, the global symmetry

further gets enhanced to U(2Nf ). An antifundamental index in the SU(Nc) theory becomes

a fundamental index due to the orientation reversal in both SO(Nc) and Sp(Nc) theories.

An orientifold action on the quiver diagram. The orientifold action on the quiver

diagram is to fold it along the red SU(Nc) node, together with orientation reversal of the

arrow in the quiver. As a result the red node becomes either SO or Sp, depending on

the projection, and the flavour symmetry either maps to itself for the case of SO gauge
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Figure 2: Left diagram: Sp(Nc) SQCD with Nf flavours as a quiver theory. The red node

represents the Sp(Nc) gauge symmetry, while the blue node denotes the global U(2Nf ) symmetries.

Right diagram: SO(Nc) SQCD with Nf flavours as a quiver theory. The red node represents the

SO(Nc) gauge symmetry, while the blue node denotes the global U(Nf ) symmetries. In each of

these cases: On the contrary to the SU(Nc) SQCD, although the blue node give rise to a U(1)

factor, the red node does not due to the orientifold projection.

SU(Nc) SQCD Sp(Nc) SQCD SO(Nc) SQCD

Basic GIOs Representation of the global symmetry

SU(Nf )L × SU(Nf )R SU(2Nf ) SU(Nf )

Meson [1, 0, . . . , 0; 0, . . . , 0, 1] [0, 1, 0, . . . , 0] [2, 0, . . . , 0]

Baryon [0, 0, . . . , 1Nc;L, 0, . . . , 0; 0, . . . , 0] * [0, 0, . . . , 1Nc;L, 0, . . . , 0]

Antibaryon [0, . . . , 0; 0, . . . , 1Nc;R, 0 . . . , 0] * **

Table 3: The basic generators of GIOs for SU , Sp and SO SQCD and how they transform under

the global symmetries. In the above, * indicates that in the Sp theory baryons and antibaryons

are simply products of mesons and stop being generators, and ** indicates that the antibaryon gets

identified with the baryon such that we have one operator instead of two.

group or is enhanced as stated above for the case of Sp gauge group. The resulting quiver

diagrams are shown in figure 2.

An orientifold action on the basic generators. A discussion on a similar problem

is presented in [38]. The mesons which transform in the bifundamental representation of

SU(Nf )L × SU(Nf )R are projected down in two steps: Firstly, the antifundamental index

is turned into a fundamental index, and secondly, the resulting representation gets respec-

tively symmetrised and antisymmetrised in the SO(Nc) and Sp(Nc) theories. In the SO(Nc)

theory, the baryon and antibaryon get identifed by the orientifold projection and inherit

the irreducible representation from the embedding of U(Nf ) inside U(Nf )×U(Nf ). On the

other hand, in the Sp(Nc) theory, a baryon breaks up into a product of mesons and stops

being a generator of the chiral ring. We summarise these results in table 3, and note that

they are consistent with the results obtained by direct computations in preceding sections.

Using these observations, we can immediately write down Hilbert Series for the freely

generated moduli spaces in the Sp and SO theories starting from the one for SU theory
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Type SU(Nc) SQCD Sp(Nc) SQCD SO(Nc) SQCD

of Representation of the global symmetry

relations SU(Nf )L × SU(Nf )R SU(2Nf ) SU(Nf )

BB = [ 1Nc;L ; 1Nc;R ] † Sym2[ 1Nc;L ]

M . . . M

[ 1(Nc+1);L ; 11;R]

MB = MB [ 12Nc+2;L ] [11;L 1Nc+1;L ]

[11;L ; 1(Nc+1);R ]

Table 4: The basic constraints between GIOs for SU , Sp and SO SQCD and how they transform

under the global symmetries. Only non-zero components of representations are presented. † indi-

cates that in the Sp theory, the relation BB = M . . . M provides us with no new information, as a

baryon is simply a product of mesons.

as follows:

PE
[

Sym2[1, 0, . . . , 0]SU(Nf )t
2
]

= PE
[

[2, 0, . . . , 0]SU(Nf )t
2
]

PE
[

[1, 0, . . . , 0; 0, . . . , 0, 1]SU(Nf )L×SU(Nf )R
t t̃
]

SO

OO

Sp

��

PE
[

Λ2[1, 0, . . . , 0]SU(2Nf )t
2
]

= PE
[

[0, 1, 0, . . . , 0]SU(2Nf )t
2
]

An orientifold action on the basic constraints. As for the basic generators, the

projection occurs in two steps: The antifundamental index is first turned into a fundamental

index, and the resulting symmetry then gets respectively symmetrised and antisymmetrised

in the SO(Nc) and Sp(Nc) theories. The results are summarised in table 4, and note that

they agree with the results obtained by direct computations in earlier sections

5. A geometric aperçu

In [1] and the preceding sections, we have used the plethystic programme, the Molien-Weyl

formula and the character expansion technique, to construct generating functions (Hilbert

Series) which count GIOs in SQCD with any classical gauge group. In the following, we

use Hilbert Series to extract a number of useful geometrical properties of moduli spaces.

We note, en passant, that there have been a number of studies of moduli spaces using

techniques from computational algebraic geometry [1, 39 – 42].

5.1 Palindromic numerator

We have observed in many case studies before that the numerator of the unrefined5 gener-

ating function (Hilbert series) for SQCD is palindromic, i.e. it can be written in the form

5Although refined generating functions can be used for deducing geometrical properties of the moduli

space, it is more convenient to use unrefined ones. The former are more useful for deriving of character
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of a degree k polynomial:

Pk(t) =

k
∑

n=0

antn , (5.1)

with symmetric coefficients ak−n = an. A trivial modification of the rigorous proof given

in section 4.3 of [1] for the SU(Nc) SQCD tells us that this palindromic property holds in

general for the SO and Sp SQCD:

Theorem 1. Let Pk(t) be a numerator of the unrefined generating function (Hilbert series)

g(Nf ,SO(Nc))(t) or g(Nf ,Sp(Nc))(t) and suppose that Pk(1) 6= 0. Then, Pk(t) is palindromic.

5.2 The SQCD moduli space of vacua is Calabi-Yau

Similar situations were encountered in [1, 17]. Due to a well-known theorem in commu-

tative algebra called the Hochster-Roberts theorem6,7 [43], our coordinate rings of the

moduli space are Cohen-Macaulay. Therefore, as an immediate consequence of Theorem 1

and the Stanley theorem8 [44], the chiral rings are also algebraically Gorenstein. Since

an affine Gorenstein variety is, by definition, affine Calabi-Yau, we reach an important

conclusion that M(Nf ,Nc) is, in fact, an affine Calabi-Yau cone over a weighted projective

variety. In brief,

Theorem 2. The moduli spaces of the SO(Nc) and Sp(Nc) theories are Calabi-Yau.9

5.3 The SQCD moduli space of vacua is irreducible

We start this subsection by noting that the irreducibility of moduli spaces is certainly not

a feature of generic gauge theories; many reducible cases exist in the literature from very

early studies of supersymmetric gauge theories. Few recent ones are presented, for example,

in [1, 17, 45]. However, we shall see below that

Observation 7. The classical moduli spaces of SQCD with SO and Sp gauge groups are

irreducible for all Nf and Nc.

As in [1], the moduli space (in the absense of a superpotential) of SQCD can be

described by a symplectic quotient:

C
n//G = C

n/Gc , (5.2)

where n = NfNc, 4NfNc for G = SO(Nc), Sp(Nc) and Gc denotes their complexifications,

Gc = SO(Nc, C), Sp(Nc, C). Since C
n is irreducible and Gc is a continuous group, we

expect the resulting quotient to be also irreducible.10

expansions.
6This theorem states that the invariant ring of a linearly reductive group acting on a regular ring is

Cohen-Macaulay.
7We are grateful to Richard Thomas for drawing our attention to this important theorem.
8This theorem states that the numerator to the Hilbert series of a graded Cohen-Macaulay domain R is

palindromic if and only if R is Gorenstein.
9By Calabi-Yau conditions, we mean that the first chern class vanishes and that there exists a unique

holomorphic middle dimensional form.
10We are grateful to Alberto Zaffaroni for this point.
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